Теорема о кинетической энергии. Referat. Закон сохранения энергии Теорема о кинетической энергии вывод формулы

Скалярная величина Т, равная сумме кинетических энергий всех точек системы, называется кинетической энергией системы.

Кинетическая энергия является характеристикой поступательного и вращательного движения системы. На ее изменение влияет действие внешних сил и так как она является скаляром, то не зависит от направления движения частей системы.

Найдем кинетическую энергию при различных случаях движения:

1. Поступательное движение

Скорости всех точек системы равны скорости центра масс . Тогда

Кинетическая энергия системы при поступательном движении равна половине произведения массы системы на квадрат скорости центра масс.

2. Вращательное движение (рис. 77)

Скорость любой точки тела: . Тогда

или используя формулу (15.3.1):

Кинетическая энергия тела при вращении равна половине произведения момента инерции тела относительно оси вращения на квадрат его угловой скорости.

3. Плоскопараллельное движение

При данном движении кинетическая энергия складывается из энергии поступательного и вращательных движений

Общий случай движения дает формулу, для вычисления кинетической энергии, аналогичную последней.

Определение работы и мощности мы сделали в параграфе 3 главы 14. Здесь же мы рассмотрим примеры вычисления работы и мощности сил действующих на механическую систему.

1. Работа сил тяжести . Пусть , координаты начального и конечного положения точки k тела. Работа силы тяжести действующих на эту частицу веса будет . Тогда полная работа:

где Р - вес системы материальных точек, - вертикальное перемещение центра тяжести С.

2. Работа сил, приложенных к вращающемуся телу .

Согласно соотношению (14.3.1) можно записать , но ds согласно рисунку 74, в силу бесконечной малости можно представить в виде - бесконечно малый угол поворота тела. Тогда

Величина называется вращающим моментом.

Формулу (19.1.6) перепишем как

Элементарная работа равна произведению вращательного момента на элементарный поворот .

При повороте на конечный угол имеем:

Если вращательный момент постоянен , то

а мощность определим из соотношения (14.3.5)

как произведение вращающего момента на угловую скорость тела.

Теорема об изменении кинетической энергии доказанная для точки (§ 14.4) будет справедлива для любой точки системы

Составляя такие уравнения для всех точек системы и складывая их почленно получаем:

или, согласно (19.1.1):

что является выражением теоремы о кинетической энергии системы в дифференциальной форме.

Проинтегрировав (19.2.2) получаем:

Теорему об изменении кинетической энергии в конечном виде: изменение кинетической энергии системы при некотором ее конечном перемещении равно сумме работ на этом перемещении всех приложенных к системе внешних и внутренних сил.

Подчеркнем, что внутренние силы не исключаются. Для неизменяемой системы сумма работ всех внутренних сил равна нулю и

Если связи, наложенные на систему, не изменяются со временем, то силы, как внешние так и внутренние, можно разделить на активные и реакции связей, и уравнение (19.2.2) теперь можно записать:

В динамике вводится такое понятие как "идеальная" механическая система. Это такая система, наличие связей у которой не влияет на изменение кинетической энергии, то есть

Такие связи, не изменяющиеся со временем и сумма работ которых на элементарном перемещении равна нулю, называются идеальными, и уравнение (19.2.5) запишется:

Потенциальной энергией материальной точки в данном положении М называется скалярная величина П, равная той работе, которую произведут силы поля при перемещении точки из положения М в нулевое

П = А (мо) (19.3.1)

Потенциальная энергия зависит от положения точки М, то есть от ее координат

П = П(х,у,z) (19.3.2)

Поясним здесь, что силовым полем называется часть пространственного объема, в каждой точке которого на частицу действует определенная по модулю и направлению сила, зависящая от положения частицы, то есть от координат х, у, z. Например, поле тяготения Земли.

Функция U от координат, дифференциал которой равен работе, называется силовой функцией . Силовое поле, для которого существует силовая функция, называется потенциальным силовым полем , а силы действующие в этом поле, - потенциальными силами .

Пусть нулевые точки для двух силовых функций П(х,у,z) и U(x,y,z) совпадают.

По формуле (14.3.5) получаем , т.е. dA = dU(x,y,z) и

где U - значение силовой функции в точке М. Отсюда

П(x,y,z) = -U(x,y,z) (19.3.5)

Потенциальная энергия в любой точке силового поля равна значению силовой функции в этой точке, взятому с обратным знаком.

То есть, при рассмотрении свойств силового поля вместо силовой функции можно рассматривать потенциальную энергию и, в частности, уравнение (19.3.3) перепишется как

Работа потенциальной силы равна разности значений потенциальной энергии движущейся точки в начальном и конечном положении.

В частности работа силы тяжести:

Пусть все силы, действующие на систему, будут потенциальными. Тогда для каждой точки k системы работа равна

Тогда для всех сил, как внешних, так и внутренних будет

где - потенциальная энергия всей системы.

Подставляем эти суммы в выражение для кинетической энергии (19.2.3):

или окончательно:

При движении под действием потенциальных сил сумма кинетической и потенциальной энергии системы в каждом ее положении остается величиной постоянной. Это закон сохранения механической энергии.

Груз массой 1 кг совершает свободные колебания согласно закону х = 0,1sinl0t. Коэффициент жесткости пружины с = 100 Н/м. Определить полную механическую энергию груза при х = 0,05м, если при х= 0 потенциальная энергия равна нулю . (0,5)

Груз массой m = 4 кг, опускаясь вниз, приводит с помощью нити во вращение цилиндр радиуса R = 0,4 м. Момент инерции цилиндра относительно оси вращения I = 0,2 . Определить кинетическую энергию системы тел в момент времени, когда скорость груза v = 2м/с . (10,5)

Под элементарной работой dА, совершаемой силой на элементарном перемещении , называют величину, равную скалярному произведению на

где угол a - угол между векторами силы и перемещением (рис.1.22,а);

Модуль вектора элементарного перемещения или элементарный путь пройденной точкой приложения силы.

Работа силы на конечном перемещении равна сумме элементарных работ:

. (1.61)

Если сила постоянна ( =const), то ее работа на прямолинейном участке длины l запишется следующим образом:

. (1.62)

Работа силы может быть положительной, отрицательной или равной нулю. Так, работы постоянных сил, приложенных к телу (рис.1.22б) на горизонтальном участке пути l, равны:

Чтобы ввести понятие о кинетической энергии W k тела, запишем элементарную работу dA силы в другом виде (см. 1.2.2):

Тогда для работы силы , переводящей тело из состояния 1 (скорость тела ) в состояние 2 (скорость тела ) можно записать:

Из полученной формулы следует, что работа силы равна разности двух величин, определяющих начальное (скорость ) и конечное (скорость ) состояния тела. При этом условия перехода из состояния 1 в состояние 2 не оказывают влияние на записанное выражение. Поэтому можно ввести функцию состояния тела, его кинетическую энергию W к как СФВ, характеризующую способность тела совершать работу за счет изменения скорости его движения и равную

В этом выражении постоянную величину выбирают, предположив, что при нулевой скорости движения тела его кинетическая энергия равна нулю, поэтому

Кинетическая энергия тел не зависит от того, как была достигнута данная скорость u, она является функцией состояния тела, положительной величиной, зависящей от выбора системы отсчета.

Введение W к позволяет сформулировать теорему о кинетической энергии, согласно которой алгебраическая сумма работ всех сил, действующих на тело, равна приращению кинетической энергии тела:

Эта теорема широко используется для анализа взаимодействия тел не только в механике, но и в других разделах курса физики, таких как электростатика, постоянный ток, электромагнетизм, колебания и волны и т.д.

1.4.2. Кинетическая энергия вращающегося а.т.т.

Возьмем а.т.т., вращающееся вокруг неподвижной оси с угловой скоростью (рис.1.16,б). Представим тело в виде совокупности м.т. массы dm , тогда для кинетической энергии тела можно записать:

Итак, кинетическая энергия а.т.т. вращающегося относительно неподвижной оси вращения, определяется по формуле



Если тело одновременно участвует в поступательном (плоском) и вращательном движениях (например, движение цилиндра без скольжения по плоскости, рис.1.23,а), то его кинетическую энергию можно получить

Рис.1.23

как сумму кинетической энергии поступательного движения тела вместе с осью вращения, проходящей через его центр масс (точка О ), со скоростью и вращательного движения тела относительно этой оси с угловой скоростью

. (1.67)

Для сплошного (I 1 =1/2mR 2 ) и тонкостенного (I 2 =mR 2 ) цилиндров одинаковой массы m и радиуса R кинетические энергии запишутся таким образом:

.

Полученные формулы для кинетической энергии цилиндров позволяют объяснить опыт по различию времени их скатывания с наклонной плоскости высотой h и длиной l (рис.1.23,б). Так, согласно закону сохранения энергии (силой трения при движении цилиндров практически можно пренебречь) получим

,

где обозначают скорости сплошного и полого цилиндров у основания наклонной плоскости.

При скатывании цилиндров центр их масс движется равноускоренно без начальной скорости и поэтому согласно формуле (1.13) можно записать:

,

т.е. на скатывание полого цилиндра требуется большее время, чем для сплошного цилиндра.

Качественно это можно объяснить тем, что полый цилиндр является более инертным, чем сплошной (для него момент инерции относительно оси вращения больше), и поэтому он медленнее изменяет свою скорость и поэтому тратит больше времени на скатывание с наклонной плоскости.

Как видно из рис.1.23,а, модули скоростей точек на поверхности цилиндра будут разными (u В =0, , u А =2u) в связи с тем, что эти точки участвуют одновременно и в поступательном и в вращательном движениях со скоростями и , причем для каждой точки направлена по касательной к поверхности цилиндра и равна по модулю u ( ).

Отметим, что движение цилиндра можно рассматривать и как ряд последовательных вращений вокруг мгновенной оси, проходящей через точку С (рис.1.23,а) с угловой скоростью w. Причем и в этом случае кинетическая энергия тела также определяется формулой (1.67).

Энергией называется скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Для характеристики различных форм движения материи вводятся соответствующие виды энергии, например: механическая, внутренняя, энергия электростатических, внутриядерных взаимодействий и др.

Энергия подчиняется закону сохранения, который является одним из важнейших законов природы.

Механическая энергия Е характеризует движение и взаимодействие тел и является функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

Кинетическая энергия

Рассмотрим случай, когда на тело массой m действует постоянная сила \(~\vec F\) (она может быть равнодействующей нескольких сил) и векторы силы \(~\vec F\) и перемещения \(~\vec s\) направлены вдоль одной прямой в одну сторону. В этом случае работу силы можно определить как A = F s . Модуль силы по второму закону Ньютона равен F = m∙a , а модуль перемещения s при равноускоренном прямолинейном движении связан с модулями начальной υ 1 и конечной υ 2 скорости и ускорения а выражением \(~s = \frac{\upsilon^2_2 - \upsilon^2_1}{2a}\) .

Отсюда для работы получаем

\(~A = F \cdot s = m \cdot a \cdot \frac{\upsilon^2_2 - \upsilon^2_1}{2a} = \frac{m \cdot \upsilon^2_2}{2} - \frac{m \cdot \upsilon^2_1}{2}\) . (1)

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела .

Кинетическая энергия обозначается буквой E k .

\(~E_k = \frac{m \cdot \upsilon^2}{2}\) . (2)

Тогда равенство (1) можно записать в таком виде:

\(~A = E_{k2} - E_{k1}\) . (3)

Теорема о кинетической энергии

работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии тела.

Так как изменение кинетической энергии равно работе силы (3), кинетическая энергия тела выражается в тех же единицах, что и работа, т. е. в джоулях.

Если начальная скорость движения тела массой m равна нулю и тело увеличивает свою скорость до значения υ , то работа силы равна конечному значению кинетической энергии тела:

\(~A = E_{k2} - E_{k1}= \frac{m \cdot \upsilon^2}{2} - 0 = \frac{m \cdot \upsilon^2}{2}\) . (4)

Физический смысл кинетической энергии

кинетическая энергия тела, движущегося со скоростью υ, показывает, какую работу должна совершить сила, действующая на покоящееся тело, чтобы сообщить ему эту скорость.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел.

Потенциальная энергия поднятого над Землей тела – это энергия взаимодействия тела и Земли гравитационными силами. Потенциальная энергия упруго деформированного тела – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Потенциальными называются силы , работа которых зависит только от начального и конечного положения движущейся материальной точки или тела и не зависит от формы траектории.

При замкнутой траектории работа потенциальной силы всегда равна нулю. К потенциальным силам относятся силы тяготения, силы упругости, электростатические силы и некоторые другие.

Силы , работа которых зависит от формы траектории, называются непотенциальными . При перемещении материальной точки или тела по замкнутой траектории работа непотенциальной силы не равна нулю.

Потенциальная энергия взаимодействия тела с Землей

Найдем работу, совершаемую силой тяжести F т при перемещении тела массой m вертикально вниз с высоты h 1 над поверхностью Земли до высоты h 2 (рис. 1). Если разность h 1 – h 2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяжести F т во время движения тела можно считать постоянной и равной mg .

Так как перемещение совпадает по направлению с вектором силы тяжести, работа силы тяжести равна

\(~A = F \cdot s = m \cdot g \cdot (h_1 - h_2)\) . (5)

Рассмотрим теперь движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости (рис. 2) сила тяжести F т = m∙g совершает работу

\(~A = m \cdot g \cdot s \cdot \cos \alpha = m \cdot g \cdot h\) , (6)

где h – высота наклонной плоскости, s – модуль перемещения, равный длине наклонной плоскости.

Движение тела из точки В в точку С по любой траектории (рис. 3) можно мысленно представить состоящим из перемещений по участкам наклонных плоскостей с различными высотами h ’, h ’’ и т. д. Работа А силы тяжести на всем пути из В в С равна сумме работ на отдельных участках пути:

\(~A = m \cdot g \cdot h" + m \cdot g \cdot h"" + \ldots + m \cdot g \cdot h^n = m \cdot g \cdot (h" + h"" + \ldots + h^n) = m \cdot g \cdot (h_1 - h_2)\) , (7)

где h 1 и h 2 – высоты от поверхности Земли, на которых расположены соответственно точки В и С .

Равенство (7) показывает, что работа силы тяжести не зависит от траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях.

При движении вниз работа силы тяжести положительна, при движении вверх – отрицательна. Работа силы тяжести на замкнутой траектории равна нулю.

Равенство (7) можно представить в таком виде:

\(~A = - (m \cdot g \cdot h_2 - m \cdot g \cdot h_1)\) . (8)

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Работа силы тяжести при перемещении тела массой m из точки, расположенной на высоте h 2 , в точку, расположенную на высоте h 1 от поверхности Земли, по любой траектории равна изменению потенциальной энергии взаимодействия тела и Земли, взятому с противоположным знаком.

\(~A = - (E_{p2} - E_{p1})\) . (9)

Потенциальная энергия обозначается буквой Е p .

Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, т. е. высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

При таком выборе нулевого уровня потенциальная энергия Е p тела, находящегося на высоте h над поверхностью Земли, равна произведению массы m тела на модуль ускорения свободного падения g и расстояние h его от поверхности Земли:

\(~E_p = m \cdot g \cdot h\) . (10)

Физический смысл потенциальной энергии взаимодействия тела с Землей

потенциальная энергия тела, на которое действует сила тяжести, равна работе, совершаемой силой тяжести при перемещении тела на нулевой уровень.

В отличие от кинетической энергии поступательного движения, которая может иметь лишь положительные значения, потенциальная энергия тела может быть как положительной, так и отрицательной. Тело массой m , находящееся на высоте h , где h < h 0 (h 0 – нулевая высота), обладает отрицательной потенциальной энергией:

\(~E_p = -m \cdot g \cdot h\) .

Потенциальная энергия гравитационного взаимодействия

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами m и М , находящихся на расстоянии r одна от другой, равна

\(~E_p = G \cdot \frac{M \cdot m}{r}\) . (11)

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞.

Потенциальная энергия гравитационного взаимодействия тела массой m с Землей, где h – высота тела над поверхностью Земли, M e – масса Земли, R e – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

\(~E_e = G \cdot \frac{M_e \cdot m \cdot h}{R_e \cdot (R_e +h)}\) . (12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой m с Землей для малых высот h (h « R e) равна

\(~E_p = m \cdot g \cdot h\) ,

где \(~g = G \cdot \frac{M_e}{R^2_e}\) – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т.к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

\(~A = F_{upr-cp} \cdot (x_1 - x_2)\) , (13)

где \(~F_{upr-cp} = k \cdot \frac{x_1 - x_2}{2}\) . Отсюда

\(~A = k \cdot \frac{x_1 - x_2}{2} \cdot (x_1 - x_2) = k \cdot \frac{x^2_1 - x^2_2}{2}\) или \(~A = -\left(\frac{k \cdot x^2_2}{2} - \frac{k \cdot x^2_1}{2} \right)\) . (14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

\(~E_p = \frac{k \cdot x^2}{2}\) . (15)

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

\(~E_p = A\) .

Физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Потенциальная энергия характеризует взаимодействующие тела, а кинетическая энергия – движущиеся тела. И потенциальная, и кинетическая энергия изменяются только в результате такого взаимодействия тел, при котором действующие на тела силы совершают работу, отличную от нуля. Рассмотрим вопрос об изменениях энергии при взаимодействиях тел, образующих замкнутую систему.

Замкнутая система – это система, на которую не действуют внешние силы или действие этих сил скомпенсировано . Если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

\(~A = -(E_{p2} - E_{p1})\) . (17)

По теореме о кинетической энергии, работа тех же сил равна изменению кинетической энергии:

\(~A = E_{k2} - E_{k1}\) . (18)

Из сравнения равенств (17) и (18) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

\(~E_{k2} - E_{k1} = -(E_{p2} - E_{p1})\) или \(~E_{k1} + E_{p1} = E_{k2} + E_{p2}\) . (19)

Закон сохранения энергии в механических процессах :

сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и си-лами упругости, остается постоянной.

Сумма кинетической и потенциальной энергии тел называется полной механической энергией .

Приведем простейший опыт. Подбросим вверх стальной шарик. Сообщив начальную скорость υ нач, мы придадим ему кинетическую энергию, из-за чего он начнет подниматься вверх. Действие силы тяжести приводит к уменьшению скорости шарика, а значит, и его кинетической энергии. Но шарик поднимается выше и выше и приобретает все больше и больше потенциальной энергии (Е p = m∙g∙h ). Таким образом, кинетическая энергия не исчезает бесследно, а происходит ее превращение в потенциальную энергию.

В момент достижения верхней точки траектории (υ = 0) шарик полностью лишается кинетической энергии (Е k = 0), но при этом его потенциальная энергия становится максимальной. Дальше шарик меняет направление движения и с увеличивающейся скоростью движется вниз. Теперь происходит обратное превращение потенциальной энергии в кинетическую.

Закон сохранения энергии раскрывает физический смысл понятия работы :

работа сил тяготения и сил упругости, с одной стороны, равна увеличению кинетической энергии, а с другой стороны, – уменьшению потенциальной энергии тел. Следовательно, работа равна энергии, превратившейся из одного вида в другой.

Закон об изменении механической энергии

Если система взаимодействующих тел не замкнута, то ее механическая энергия не сохраняется. Изменение механической энергии такой системы равно работе внешних сил:

\(~A_{vn} = \Delta E = E - E_0\) . (20)

где Е и Е 0 – полные механические энергии системы в конечном и начальном состояниях соответственно.

Примером такой системы может служить система, в которой наряду с потенциальными силами действуют непотенциальные силы. К непотенциальным силам относятся силы трения. В большинстве случаев, когда угол между силой трения F r тела составляет π радиан, работа силы трения отрицательна и равна

\(~A_{tr} = -F_{tr} \cdot s_{12}\) ,

где s 12 – путь тела между точками 1 и 2.

Силы трения при движении системы уменьшают ее кинетическую энергию. В результате этого механическая энергия замкнутой неконсервативной системы всегда уменьшается, переходя в энергию немеханических форм движения.

Например, автомобиль, двигавшийся по горизонтальному участку дороги, после выключения двигателя проходит некоторый путь и под действием сил трения останавливается. Кинетическая энергия поступательного движения автомобиля стала равной нулю, а потенциальная энергия не увеличилась. Во время торможения автомобиля произошло нагревание тормозных колодок, шин автомобиля и асфальта. Следовательно, в результате действия сил трения кинетическая энергия автомобиля не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

Закон сохранения и превращения энергии

при любых физических взаимодействиях энергия превращается из одной формы в другую.

Иногда угол между силой трения F tr и элементарным перемещением Δr равен нулю и работа силы трения положительна:

\(~A_{tr} = F_{tr} \cdot s_{12}\) ,

Пример 1 . Пусть, внешняя сила F действует на брусок В , который может скользить по тележке D (рис. 5). Если тележка перемещается вправо, то работа силы трения скольжения F tr2 , действующей на тележку со стороны бруска, положительна:

Пример 2 . При качении колеса его сила трения качения направлена вдоль движения, так как точка соприкосновения колеса с горизонтальной поверхностью двигается в направлении, противоположном направлению движения колеса, и работа силы трения положительна (рис. 6):

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащихся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физматлит, 2004. – 608 с.
  4. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

Установите с помощью движков регуляторов значения массы тела m , угла наклона плоскости a , внешней силы F вн , коэффициента трения m и ускорения а , указанных в табл.1 для вашей бригады.

Одновременно включите секундомер и нажмите кнопку "Старт". Выключите секундомер в момент остановки тела в конце наклонной плоскости.

Проделайте этот опыт 10 раз и результаты измерения времени соскальзывания тела с наклонной плоскости запишите в табл. 2.

ТАБЛИЦА 1. Исходные параметры опыта

№ бриг.

m , кг

m

0,10

a , град

F вн, Н

а, м/с 2

ТАБЛИЦА 2. Результаты измерений и расчётов

W п = - потенциальную энергию тела в верхней точке наклонной плоскости;

Д) - работу силы трения на участке спуска;

Е) - работу внешней силы на участке спуска

и запишите эти значения в соответствующие строки табл. 2. Вычислите средние значения этих параметров и запишите их в столбец «средние значения» табл.2.

Используя формулу (7) проверьте выполнение закона сохранения механической энергии при движении тела по наклонной плоскости. Рассчитайте погрешности и сделайте выводы по результатам проведённых опытов.

Вопросы и задания для самоконтроля

1.В чём заключается закон сохранения механической энергии?

2.Для каких систем выполняется закон сохранения механической энергии?

3.В чём состоит различие между понятиями энергии и работы?

4.Чем обусловлено изменение потенциальной энергии?

5.Чем обусловлено изменение кинетической энергии?

6.Необходимо ли выполнение условия замкнутости механической системы тел для выполнения закона сохранения механической энергии?

7.Какие силы называются консервативными?

8.Какие силы называются диссипативными?

9.Тело медленно втаскивают в гору. Зависят ли от формы профиля горы: а) работа силы тяжести; б) работа силы трения? Начальная и конечная точки перемещения тела фиксированы.

10.Тело соскальзывает с вершины наклонной плоскости без начальной скорости. Зависит ли работа силы трения на всём пути движения тела до остановки на горизонтальном участке: а) от угла наклона плоскости; б) от коэффициента трения?

11.По наклонной плоскости с одной и той же высоты соскальзывают два тела: одно массой m , другое массой 2 m . Какое из тел пройдёт до остановки по горизонтальному участку путь больший и во сколько раз? Коэффициенты трения для обоих тел одинаковы.

12.Санки массой m скатились с горы высотой Н и остановились на горизонтальном участке. Какую работу необходимо совершить для того, чтобы поднять их на гору по линии скатывания.

13.С одинаковой начальной скоростью тело проходит: а) впадину; б) горку, имеющие одинаковые дуги траекторий и одинаковые коэффициенты трения. Сравните скорости тела в конце пути в обоих случаях.

Литература

1. Трофимова Т.И. Курс физики. Гл.3, §§12,13.

№ изм.

Среднее

значение

Погр.

t , с

v , м/с

S, м

W к , Дж

W п , Дж

A тр, Дж

A вн , Дж

W полн , Дж

Теорема о кинетической энергии формулируется так. Сумма работы всех сил (консервативных и неконсервативных), приложенных к телу, равна приращению его кинетической энергии. С помощью этой теоремы можно обобщить закон сохранения механической энергии на случай незамкнутой (неизолированной) системы : приращению полной механической энергии системы равно работе сторонних сил над системой.

Траектория

Траекторией называется воображаемая линия, описываемая телом при движении. В зависимости от формы траектории движения бывают криволинейные и прямолинейные. Примеры криволинейного движения: движение тела, брошенного под углом к горизонту (траектория – парабола), движение материальной точки по окружности.

Трение

Возникает между двумя телами в плоскости соприкосновения их поверхностей и сопровождается диссипацией (рассеиванием) энергии. Механическая энергия системы, в которой есть трение, может только уменьшаться. Наука, изучающая трение, называется трибологией. Опытным путем установлено, что максимальная сила трения покоя и сила трения скольжения не зависит от площади соприкосновения тел и пропорциональна силе нормального давления, прижимающей поверхности друг к другу. Коэффициент пропорциональности при этом называется коэффициентом трения (покоя или скольжения).

Третий закон Ньютона

Третий закон Ньютона - физический закон, в соответствии с которым силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти точки. Как и прочие законы Ньютона, третий закон справедлив только для инерциальных систем отсчета . Краткая формулировка третьего закона: действие равно противодействию.

Третья космическая скорость

Третья космическая скорость - минимальная скорость , необходимая для того, чтобы космический аппарат, запущенный с Земли, преодолел притяжение Солнца и покинул Солнечную систему. Если бы Земля в момент запуска была неподвижна и не притягивала тело к себе, то третья космическая скорость была бы равна 42 км/с. С учетом скорости орбитального движения Земли (30 км/с) третья космическая скорость равна 42-30 = 12 км/с (при запуске в направлении орбитального движения) или 42+30 = 72 км/с (при запуске в противоположном направлении). Если учесть еще и силу притяжения к Земле, то для третьей космической скорости получим значения от 17 до 73 км/с.



Ускорение

Ускорение - векторная величина, характеризующая быстроту изменения скорости . При произвольном движении ускорение определяется как отношение приращения скорости к соответствующему промежутку времени. Если устремить этот промежуток времени к нулю, получим мгновенное ускорение. Значит, ускорение есть производная от скорости по времени. Если рассматривается конечный промежуток времени Δt, то ускорение называется средним. При криволинейном движении полное ускорение складывается из тангенциального (касательного) и нормального ускорения .

Угловая скорость

Угловая скорость - векторная величина, характеризующая вращательное движение твердого тела и направленная по оси вращения согласно правилу правого винта. Средняя угловая скорость численно равна отношению угла поворота к соответствующему промежутку времени. Взяв производную от угла поворота по времени, получим мгновенную угловую скорость. Единицей угловой скорости в СИ является рад/с.

Ускорение свободного падения

Ускорение свободно падающего тела - ускорение, с которым движется тело под действием силы тяготения. Ускорение свободного падения одинаково для всех тел, независимо от их массы . На Земле ускорение свободно падающего тела зависит от высоты над уровнем моря и от географической широты и направления к центру Земли. На широте 45 0 и на уровне моря ускорение свободно падающего тела g = 9.80665 м/с 2 . В учебных задачах обычно полагают g = 9,81 м/с 2 .

Физический закон

Физический закон - необходимая, существенная и устойчиво повторяющаяся связь между явлениями, процессами и состояниями тел. Познание физических законов составляет основную задачу физической науки.

50. Физический маятник

Физический маятник - абсолютно твердое тело , имеющее ось вращения. В поле тяготения физический маятник может совершать колебания около положения равновесия, при этом массу системы нельзя считать сосредоточенной в одной точке. Период колебаний физического маятника зависит от момента инерции тела и от расстояния от оси вращения до центра масс .

Энергия (от греч. energeia – деятельность)

Энергия - скалярная физическая величина, являющаяся общей мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие. Основные виды энергии: механическая, внутренняя, электромагнитная, химическая, гравитационная, ядерная. Одни виды энергии могут превращаться в другие в строго определенных количествах (см. также Закон сохранения и превращения энергии ).

Термодинамика и молекулярная физика