Эксплуатация тепловых сетей. Обогрев помещений с применением теплонакопителей. Повышение тепловой устойчивости зданий

Аккумулирование тепла в любой водонагревательной системе позволяет приспособить ее к условиям изменяющегося на протяжении суток спроса на горячую воду. Применение различных средств для накопления энергии при использовании солнечных энергетических установок позволяет также преодолеть и другую трудность, связанную с непостоянством интенсивности солнечной энергии в течение суток. Как мы уже видели, даже в условиях безоблачного неба приемлемое количество энергии при подходящей температуре жидкости можно получать лишь в течение нескольких часов до и после полудня. Более высокие температуры требуются лишь на короткие промежутки времени. Например, солнечные энергетические установки, предназначенные для отопления зданий, поддерживают температуру теплоносителя на уровне 60° С лишь около трех часов в сутки. Поскольку в подобных системах периоды потребления и получения энергии не совпадают, то очевидно, что ее нужно накапливать в течение суток, чтобы затем отбирать при подходящей температуре.

В развитых странах с похожим на английский климатом в зимнее время средний ежесуточный расход энергии на горячее водоснабжение и отопление жилых домов оценивается в 15 и 150 кВт-ч соответственно. Ежедневные затраты энергии на горячее водоснабжение крупных больниц в странах тропического пояса составляют несколько МВт-ч. Если для накопления энергии используется вода, подогретая, скажем, на 10 К, то при ее удельной теплоемкости 1,2 Вт-ч/(кг-К), малой скорости расхода в ждлом здании и без учета потерь для получения в течение суток необходимого количества энергии требуется около 14 тыс. л воды, а занимаемый ею объем составляет 14 м2. Эта цифра выглядит более или менее реальной, но применительно к больнице она достигает 200 тыс. л; а соответствующее сооружение технически осуществить чрезвычайно трудно.

С подобной трудностью сталкиваются при разработке бытовых ночных электронагревателей, получивших сейчас в Англии широкое распространение. В таких нагревателях, потребляющих сравнительно малую мощность, электрические элементы разогревают специальный материал, который хорошо удерживает тепло. Запасенная таким образом энергия затем постепенно расходуется, поддерживая температуру помещения в определенных пределах. При этом материал настолько перегревается, что обычно для теплоизоляции в нагревательных элементах используют огнеупорный кирпич. В результате подобные нагреватели оказываются весьма громоздкими.

При использовании солнечных коллекторов энергия накапливается либо в подземных резервуарах с водой, либо в заполненных камнями отсеках. Второй вариант предпочтительнее для воздухонагревательных систем, где воздух нагревается, проходя между камнями. Если предположить, что камни имеют одинаковый размер и сферическую форму, то пустоты между ними составляют около трети общего объема отсека. Это обеспечивает большую поверхность контакта нагреваемого воздуха и хорошие условия для теплообмена. Основным недостатком подобных систем является их низкая теплоемкость (в четыре раза.меньше теплоемкости воды).

В рассмотренных устройствах тепловая энергия накапливается за счет повышения кинетической и потенциальной энергии молекул среды. Значительно большая энергия расходуется при фазовых переходах, то есть в процессе разрушения упорядоченной структуры, например при плавлении или парообразовании. В таком случае входная энергия преимущественно тратится на повышение потенциальной энергии молекул, обусловленное увеличением расстояния между ними. В одной из разновидностей солнечного нагревателя в качестве такого накапливающего тепло вещества используется парафин, температура плавления которого равна примерно 55° С, а скрытая теплота плавления составляет около 40 Вт-ч/кг. При охлаждении парафина мы вновь получаем эту энергию, но при более удобной температуре. В подобном устройстве для накопления 150 кВт-ч тепловой энергии объем резервуара не превышает 4 м3. В качестве теплоносителей применяются также гидраты некоторых солей. Например, глауберова соль Na2S04-10H20 плавится при температуре около 32 °С, при этом на разрушение кристаллической структуры затрачивается приблизительно 67 Вт-ч/кг. При охлаждении ее до той же температуры накопленная энергия высвобождается. Процесс "плавления - затвердевания соли можно повторить многократно, однако установлено, что если расплав соли не перемешивать, то возникает перераспределение концентрации, затрудняющее рекристаллизацию соли. Благодаря постояным поискам и исследованиям удалось найти и другие вещества с большой скрытой теплотой плавления, в которых обратимые фазовые переходы осуществляются при температуре 40-60° С. К сожалению, многие из них непригодны из-за высокой стоимости, взрывоопасно- сти, токсичности, коррозионной активности и т. д.

Повышение уровня централизации теплоснабжения (что характерно для крупных городов) сопровождается двумя опасными рисками - риском серьезного аварийного нарушения процесса теплоснабжения и риском затяжного (сверх допустимого) времени обнаружения и устранения аварий и неисправностей.

Опыт эксплуатации московских систем теплоснабжения показал, что ежегодно на 100 км двухтрубных тепловых сетей приходится от 20 до 40 сквозных повреждений труб, из них 90% случаются на подающих трубопроводах. Среднее время восстановления поврежденного участка теплосети при этом (в зависимости от диаметра и конструкции его) составляет от 5 до 50 ч и более, а полное восстановление повреждения может потребовать несколько суток (табл. 1).

Таблица 1. Среднее время восстановления z р, ч, поврежденного участка тепловой сети

Диаметр труб d, м

Расстояние между секционирующими задвижками l, км

Среднее время восстановления z р, ч

Время z p , ч, необходимое для восстановления поврежденного участка магистральной тепловой сети с диаметром труб d, м, и расстоянием между секционирующими задвижками l, км, можно рассчитать также по следующей эмпирической формуле:

Конечно, ждать несколько суток или даже часов в зимних условиях и не предпринимать мер к спасению положения совершенно недопустимо. Поэтому практика эксплуатации систем ЦТ и жилищного фонда выработала важное правило предварительной оценки аварийных ситуаций с учетом теплоаккумуляционных возможностей различных зданий при различных текущих наружных температурах отопительного сезона. Вот это правило:

При подготовке к отопительному периоду рекомендуется теплоснабжающим организациям с привлечением собственников жилых домов или уполномоченных ими организаций-исполнителей коммунальных услуг выполнить расчеты допустимого времени устранения аварий и восстановления теплоснабжения по методике, приведенной в Указаниях по повышению надежности систем коммунального теплоснабжения, разработанных АКХ им. К. Д. Памфилова и утвержденных ОАО «Роскоммунэнерго» 26.06.89, и в рекомендациях СНиП 41-02-2003.

Расчеты следует представить органам управления жилищно-коммунальным хозяйством для использования при подготовке к зиме объектов жилищного фонда.

Эта методика опирается на практический опыт и исследования эксплуатации городского фонда, в условиях нарушенного (прекращения) теплоснабжения жилых строений и промышленных зданий с оценкой темпа падения температуры, °С/ч, в отапливаемых помещениях при различных температурах наружного воздуха.

Линия падения внутренней температуры отапливаемых помещений во времени при этом носит экспоненциальный (нисподающий) характер (рис. 1) и зависит в первую очередь от конструктивных характеристик зданий (конструкции и материала стен и утеплителей, коэффициента остекления, расположения помещений в здании и др.), определяющих аккумуляционную способность строений, а также климатических условий размещения объектов.

Рисунок 1. Линии падения температуры внутреннего воздуха (------) и внутренней поверхности наружной стены (- - - - -) здания после отключения отопления

Примерные кривые изменения температуры внутреннего воздуха при включении отопления - натопе показаны на рис. 2.

Рисунок 2. Кривые изменения температуры внутреннего воздуха и внутренней поверхности наружной стены при включении отопления - натопе

Эмпирически удалось вычислить примерные коэффициенты аккумуляции зданий, темпы падения внутренней температуры и разработать методику расчета, основные положения которой рассмотрим подробнее.

Замораживание трубопроводов в подвалах, лестничных клетках и на чердаках зданий может произойти в случае прекращения подачи теплоты при снижении температуры воздуха внутри жилых помещений до 8 °С и ниже. Примерный темп падения температуры в отапливаемых помещениях (°С/ч) при полном отключении подачи теплоты приведен в табл. 2, по нему определены коэффициенты аккумуляции зданий.

Таблица 2. Темпы падения внутренней температуры здания при различных температурах наружного воздуха

Коэффициент аккумуляции, ч

Темп падения температуры, °С/ч, при температуре наружного воздуха, °С

±0

-10

-20

-30

Коэффициент аккумуляции характеризует величину тепловой аккумуляции зданий и зависит от толщины стен, коэффициента теплопередачи и коэффициента остекления. Коэффициенты аккумуляции теплоты для жилых и промышленных зданий массового строительства приведены в табл. 3.

Таблица 3. Коэффициенты аккумуляции для зданий типового строительства

Характеристика зданий

Помещения

Коэффициент аккумуляции, ч

1

2

3

1. Крупнопанельный дом серии 1-605А с трехслойными наружными стенами, с утепленными минераловатными плитами с железобетонными фактурными слоями (толщина стены 21 см, из них толщина утеплителя 12 см)

верхнего этажа

среднего и первого этажей

2. Крупнопанельный жилой дом серии К7-3 (конструкции инж. Лагутенко) с наружными стенами толщиной 16 см, с утепленными минераловатными плитами с железобетонными фактурными слоями

верхнего этажа

среднего этажа

3. Дом из объемных элементов с наружными ограждениями из железобетонных вибропрокатных элементов, утепленных минераловатными плитами. Толщина наружной стены 22 см, толщина слоя утеплителя в зоне стыкования с ребрами 5 см, между ребрами 7 см. Общая толщина железобетонных элементов между ребрами 30-40 мм

Угловые верхнего этажа

4. Кирпичные жилые здания с толщиной стен в 2,5 кирпича и коэффициентом остекления 0,18-0,25

5. Промышленные здания с незначительными внутренними тепловыделениями (стены в 2 кирпича, коэффициент остекления 0,15-0,3)

На основании приведенных данных можно оценить время, имеющееся для ликвидации аварии или принятия мер по предотвращению лавинообразного развития аварий, т.е. замерзания теплоносителя в системах отопления зданий, в которые прекращена подача теплоты.

Если в результате аварии отключено несколько зданий, то определение времени, имеющегося в распоряжении на ликвидацию аварии или принятия мер по предотвращению развития аварии, производится по зданию, имеющему наименьший коэффициент аккумуляции.

Рассмотрим такой случай на конкретном примере.

ПРИМЕР 1. Исходные условия: В результате аварии на распределительной теплосети диаметром 300 мм отключен ЦТП с группой жилых зданий, среди которых имеется крупнопанельный жилой дом конструкции инж. Лагутенко. Температура наружного воздуха - 20 °С.

Требуется: Определить допустимое время устранения аварии на распределительной теплосети при указанной наружной температуре и оценить сложившуюся ситуацию.

Решение: 1. По табл. 3 по п. 2 определяем коэффициент аккумуляции здания по среднему этажу: он равен 40 ч.

2. По табл. 2 для здания с коэффициентом аккумуляции 40 ч находим темп падения температуры (°С/ч) при температуре наружного воздуха -20 °С: он равен 1,1 °С/ч.

3. Определяем время снижения температуры в квартирах с 20 до 8 °С, при которой в подвалах и на лестничных клетках может произойти замерзание теплоносителя в трубах: (20 - 8): 1,1 = 10,9 ч ≈ 11 ч.

4. По табл. 1 находим, что для теплосети диаметром 300 мм время устранения аварии составляет от 5 до 10 ч (без учета времени обнаружения места аварии).

5. Для оценки ситуации можно сделать следующие выводы:

5.1. Время устранения аварии допустимо до 10 ч и при хорошей организации работы аварийной службы опорожнения системы отопления и других систем указанного жилого дома не потребуется, так как теплоснабжение микрорайона будет восстановлено.

5.2. При отсутствии аварийной службы или плохой организации работ по обнаружению и устранению аварийного повреждения теплосети персоналу ЖКХ необходимо в течение 10 ч произвести спуск систем отопления, горячего и холодного водоснабжения не только указанного жилого дома, но и всех других отключенных домов и строений, а в дальнейшем и отключенного участка теплосети, ЦТП и ИТП, во избежание замораживания их и цепочного, лавиноообразного развития аварии, могущих вызвать тяжелые последствия. По сообщениям «Строительной газеты» (№ 49, 50 за 2003 г.) 1 января 2003 г. в пос. Аркуль Нолинского района Кировской обл. в результате падения дерева на высоковольтную ЛЭП произошло аварийное отключение энергоснабжения поселка, в том числе и котельных. По трагическому совпадению в то время, когда перестали работать циркуляционные насосы в котельных и прекратилась циркуляция воды во всех теплосистемах поселка, температура воздуха понизилась от -1 °С до - 24 °С. Из-за отсутствия противоаварийного плана и инструкций персоналу вода на некоторых участках теплотрасс и тепловых системах зданий не была своевременно слита, к тому же не все абоненты котельных были оповещены об аварии (детсад, аптека, общежитие, медицинская лаборатория и др.). Все это привело к замораживанию теплотрасс и теплосистем 14 жилых зданий. В результате было повреждено и уничтожено имущество, восстановление которого обошлось в 690 тыс. рублей, а директор МП ЖКХ поселка А.Г. Сорокин привлечен к уголовной ответственности за преступление по статье 168 ч.1 Уголовного кодекса - уничтожение чужого имущества в крупном размере, совершенное по неосторожности, и приговорен к выплате денежного штрафа. Аварийная ситуация с электроснабжением была ликвидирована лишь через 20 ч 30 мин.

Для этого должен иметься заранее подготовленный и согласованный план ликвидации аварий и инструкции персоналу по выполнению его.

Источник фото - сайт http://www.devi-ekb.ru

Используя накопители тепловой энергии можно экономически эффективно сместить потребление гигаватт энергии. Но на сегодняшний день рынок таких накопителей катастрофически мал, по сравнению с потенциальными возможностями. Основная причина кроется в том, что на начальном этапе зарождения систем аккумуляции тепла, производителями уделялась мало значения исследованиям в этой области. Впоследствии производители в погони за новыми стимулами привели к тому, что технология испортилась, а люди стали неверно понимать ее цели и методы.

Наиболее очевидной и объективной причиной использования системы аккумуляции тепла, является эффективное сокращение количества затрачиваемых средств на потребляемую энергию, к тому же стоимость энергии в пиковые часы, значительно выше, чем в другое время.

Мифы о системах накопления энергии

Миф 1. Нечастое применение таких систем

В настоящее время на рынке широко представлены системы накопления (аккумуляции) тепловой энергии, и многие активно их используют. Отличным примерами, которые демонстрируют значение накопленной энергии, являются бытовые водонагреватели, в которых такую систему называют «системой внепикового охлаждения». Для того, чтобы мгновенно нагреть воду требуется около 18 кВт, но самые мощные нагреватели имеют нагревательные элементы мощностью 4,5 кВт. Поэтому требуется в 4 раза меньше инфраструктур, необходимых про проведения проводки кабеля и соответственно, уменьшенное потребление энергии.

Никем не устанавливаются нагреватели, рассчитанные на потребление мгновенно максимально рассчитанную нагрузку, такая же практика существует и для системы климатизации. Причем установка системы с чиллером обычно уменьшается на 40—50 % (уменьшение инфраструктуры).

Миф 2. Системы аккумуляции тепла занимают очень много места

Возвращаясь к обычному водонагревателю? Много ли он занимает места в Вашем доме?

К тому же, как правило, используется система с частичным накоплением тепла, которая обеспечивает около трети необходимой мощности, потому и места такая установка занимает мало.

Миф 3. Такие системы слишком сложны

Обычный водонагреватель имеет простую конструкцию. Он содержит нагреватель, мощность которого ниже мощности, которая обеспечивает максимальные нагрузки, а его включение происходит в момент, когда температура вводы опускается ниже 95 % от заданной.

Емкость данной системы является простым примером накопителем тепла, который не имеет никаких движущих частей. В системе с частичным обеспечением нагрузки не может произойти отказа, так как в них отсутствует способность случайного задания большого потребления электроэнергии. Большие системы внепикового охлаждения имеют более сложные структуры управления, поэтому с ними может возникать множество проблем, а проектировщику придется потрудиться, чтобы спроектировать эффективную систему со значительной экономией ресурсов.

Миф 4. Отсутствие резервирования (запаса) при частичном накоплении энергии

Практически любая система внепикового охлаждения способна удовлетворять такому же резервирования, как и обычная система такой же стоимости.

Миф 5. Большие капитальные затраты

Получить действующие цены на оборудование проблематично, так как производители их опубликовывают неохотно. Хотя во многих исследованиях указываются низкие цены себестоимости систем. Рассчитаем примерную стоимость системы, используя в качестве удельной стоимости примерную величину в 256 $ на киловатт охлаждения, при этом получим приблизительную стоимость на установку всей системы:

Система, не использующая накопление энергии:

3 чиллера с мощностью 1400 кВт x 256 $/кВт ≈ 1 080 000 долларов.

Система, использующая частичное накопление тепла:

2 чиллера мощностью 1400 кВт x 256 $/кВт ≈ 720 000 долларов.

Система аккумуляции льда на 12300 кВтч x 28 $/кВт.ч ≈ 350 000 долларов.

Общая стоимость системы: ≈ 1 070 000 долларов.

Некоторые особенности оборудования и его расположение в системе могут привести к дополнительным капитальным затратам, однако, конкурировать по стоимости такие системы могут запросто.

Миф 6. Нет обеспечения экономии энергии

Анализируя экономию, необходимо рассмотреть как энергию, которая потребляется в здании, так и энергию, которая используется в источнике ее производства на электростанции. Энергоэффективное оборудование в большинстве своем призвано снижать потребление энергии, при этом, не снижая времени ее использования. Системы внепикового охлаждения экономят энергию за счет переноса ее "за счетчик". Вероятность экономии - 50/50.

Миф 7. Тарифы на электроэнергию могут изменяться, что может привести не только к отсутствию экономии, но и к увеличению затрат

Конечно, изменение тарифов неизбежно, но условия и потребление энергии остаются неизменными.

Можно надеяться, что когда-нибудь нагрузки в дневные и ночные часы сравняются, но такое произойдет, вряд ли, поэтому существенная разница в тарифах будет существовать еще долгие годы.

Достаточно известной на сегодняшний день системой аккумуляции тепла является система «теплый пол», в которой кабель заливается стяжкой 5 см. Но немногие знают, что увеличение стяжки до 10-15 см поможет не только снизить расходы, но и начать процесс накапливания тепла.

Раньше для накопления тепла использовали «тепловые пушки», которые не грели пространство около непосредственного нахождения людей, и к тому же сжигали кислород. Кабельные же системы обогрева не только позволяют эффективно аккумулировать тепло, но еще и создают комфортный микроклимат в помещении.

Одной из причин, позволяющих экономию сделать значительной, стало введение новых трехтарифных счетчиков электроэнергии, но не у многих есть возможность использовать систему обогрева в ночные часы. Использование кабельной системы вкупе со стяжкой 5 см позволяет нагревать быстро кабель, но в тоже время происходит и быстрое его остывание. То есть процесс имеет циклический характер. Увеличение стяжки до 10-15 см позволяет дольше сохранять тепло, а значит и длительность цикла увеличивается до нескольких часов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Жидкостные тепловые аккумуляторы. Физические основы для его создания. Аккумуляторы тепла, основанные на фазовых переходах. Особенности тепловых аккумуляторов с твёрдым теплоаккумулирующим материалом. Конструкция теплового аккумулятора фазового перехода.

    реферат , добавлен 18.01.2010

    Особенности конструкции разработанной фритюрницы для приготовления картофеля фри. Расчет полезно используемого тепла. Определение потерь тепла в окружающую среду. Конструирование и расчет электронагревателей. Расход тепла на нестационарном режиме.

    курсовая работа , добавлен 16.05.2014

    Общие сведения о солнце как источнике энергии. История открытия и использование энергии солнца. Способы получения электричества и тепла из солнечного излучения. Сущность и виды солнечных батарей. "За" и "против" использования солнечной энергии.

    реферат , добавлен 22.12.2010

    Характеристика Солнца как источника энергии. Проектирование и постройка зданий с пассивным использованием солнечного тепла, способы уменьшения энергопотребления. Виды концентрационных станций, конструкции активной гелиосистемы и вакуумного коллектора.

    реферат , добавлен 11.03.2012

    Фотоэлектрическое преобразование солнечной энергии. Элементы солнечных батарей. Регуляторы зарядки и разрядки аккумуляторов, отбора мощности батареи. Технические характеристики, устройство и принцип работы современных термоэлектрических генераторов.

    реферат , добавлен 16.02.2015

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Расчет расхода тепла на отопление, вентиляцию, горячее водопотребление. Графики часового и годового потребления тепла по периодам и месяцам. Схема теплового узла и присоединения теплопотребителей к теплосети. Тепловой и гидравлический расчет трубопровода.

    курсовая работа , добавлен 25.01.2015

    Определение параметров цикла со смешанным подводом теплоты в характерных точках. Политропное сжатие, изохорный подвод тепла, изобарный подвод тепла, политропное расширение, изохорный отвод тепла. Количество подведённого и отведённого тепла, КПД.

    контрольная работа , добавлен 22.04.2015

Термохимическое аккумулирование тепла основано на ис­пользовании энергии связей обратимых химических реакций

химического аккумулирования

Объемная

плотность

«Необходимый

запасаемой энергии

до и после разрядки, кг/кг

0,0482 ** 0,0023 * 0,0501 **

(иногда определение термохимического аккумулирования включает также аккумулирование теплоты сорбции). Реакция может проходить в присутствии катализатора или без него. Про­дукты реакции должны быть разделены и храниться порознь.

В табл. 2.4 приведены некоторые реакции, предложенные для термохимического аккумулирования. Реакции зарядки протекают слева направо. Теплота реакции отнесена к 1 кг об­щей массы реагентов. Температура реакции представляет со­бой так называемую «обратимую температуру», соответствую­щую случаю, когда коэффициент реакции равен единице. Про-

дукты реакции газообразные. Если хотя бы один из продуктов реакции хранится в жидком состоянии, то плотность запасен­ной энергии может быть увеличена. Однако во время кон­денсации (зарядки) высвобождается теплота испарения, ко­торая обычно не используется и снижает эффективность акку­мулирования.

Для перспективных солнечных электростанций с газовыми турбинами было предложено использование диссоциа­ции S03. Плотность запасаемой энергии в этом случае вполне приемлема, несмотря на высокие давления хранения кисло­рода. Характеристики дополнительно повышаются, если SO2, получаемый во время операции зарядки, закачивается в опо­рожненный сосуд для хранения S03 (аналогично рис. 2.9,6). Однако проблемы, связанные со сроком службы катализатора и конструкционных материалов, ждут своего решения.

Для аккумулирования и передачи тепла будущих высоко­температурных реакторов, охлаждаемых гелием, была пред­ложена реакция между метаном и водяным паром . Эта реакция не очень перспективна, если иметь в виду лишь цели аккумулирования тепла, потому что продукты реакции газо­образны, вследствие чего плотность запасаемой энергии низка.

Диссоциация NH4HSO4 обеспечивает очень высокую плот­ность запасаемой энергии, так как все продукты могут хра% ниться в жидком состоянии. Эта соль имеет низкую точку плавления (144°С); она сравнительно недорога, а продукты реакции NH3, S03 и Н20 легко разделяются, конденсируется, хранятся и испаряются. Хотя эта схема термохимического ак­кумулирования представляет интерес, ее разработка еще не завершена.